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Abstract

Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic 

architecture or its genetic relationship with other disorders. To discover loci associated with AD 

and characterize the relationship between AD and other psychiatric and behavioral outcomes, we 

carried out the largest GWAS to date of DSM-IV diagnosed AD. Genome-wide data on 14,904 

individuals with AD and 37,944 controls from 28 case/control and family-based studies were 

meta-analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). 

Independent, genome-wide significant effects of different ADH1B variants were identified in 

European (rs1229984; p = 9.8E-13) and African ancestries (rs2066702; p = 2.2E-9). Significant 

genetic correlations were observed with 17 phenotypes, including schizophrenia, ADHD, 

depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially 

overlap with those for alcohol consumption, underscoring the genetic distinction between 

pathological and non-pathological drinking behaviors.
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INTRODUCTION

Excessive alcohol use is a leading contributor to morbidity and mortality. One in 20 deaths 

worldwide is attributable to alcohol consumption, as is 5.1% of the global burden of 

disease1. Alcohol dependence (AD), as defined by the Fourth Edition of the American 

Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM-IV)2, 

is a serious psychiatric disorder characterized by tolerance, withdrawal, loss of control over 

drinking and excessive alcohol consumption despite negative health and social 

consequences. Among alcohol drinkers, 12% meet criteria for DSM-IV AD during their 

lifetimes3. In the United States, only 25% of those with AD ever receive treatment4.

AD is moderately heritable (49% by a recent meta-analysis)5 and numerous genome-wide 

association studies (GWAS) have aimed to identify loci contributing to this genetic variance 

(see6 for a review). According to one study, common SNPs are responsible for as much as 
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30% of the variance in AD7, but few have been identified to date. Variants in the genes 

responsible for alcohol metabolism, especially ADH1B and ALDH2, have been strongly 

implicated8–13. The association between AD (and related drinking phenotypes) and 

rs1229984, a missense SNP (Arg48His) in ADH1B that affects the conversion of alcohol to 

acetaldehyde, represents one of the largest common-variant effect sizes observed in 

psychiatry, with the His48 allele accelerating ethanol metabolism and affording 

approximately 3-fold reduction in likelihood of AD across numerous studies8,10. Another 

functional polymorphism, rs671 in ALDH2 (Glu504Lys), strongly affects alcohol 

metabolism by blocking conversion of acetaldehyde to acetate and has an even stronger 

effect on risk for AD, but is rare except in some Asian populations8,12,13 ADH1B and 

ALDH2 polymorphisms, however, only explain a small proportion of the heritable variation 

in AD in populations of European or African ancestry.

In this study, the Substance Use Disorders working group of the Psychiatric Genomics 

Consortium (PGC-SUD14) compiled the largest numbers of carefully diagnosed alcohol 

dependent individuals and alcohol-exposed controls to date, from both case-control and 

family studies. These included substantial numbers of both European ancestry (EU, N = 

46,568, including 38,686 unrelated individuals) and admixed African-American ancestry 

(AA, N = 6,280, including 5,799 unrelated individuals) subjects. AD diagnoses were derived 

from clinician ratings or semi-structured interviews following DSM-IV2 criteria. Each study 

was subjected to stringent quality control (QC) before conducting GWAS within each 

population of each study, followed by a genome-wide meta-analysis. We estimated the SNP-

heritability (h2
g) of AD and examine the extent to which aggregate genetic variation in AD 

is related to traits from 45 other GWAS, including continuous measures of alcohol 

consumption. We also examined whether polygenic risk scores (PRS) derived from these 

analyses predicted alcohol dependence and related measures of problem drinking in three 

independent samples.

RESULTS

GWAS meta-analyses:

The trans-ancestral discovery meta-analysis of GWAS of AD in 28 cohorts (Table 1; 
Supplementary Table S1) identified a genome-wide significant (GWS; p < 5E-8) association 

in the ADH gene cluster on chromosome 4 (Figure 1; Table 2). Examining this locus in each 

population (Figure 2), rs1229984 in ADH1B was the strongest associated variant from the 

analysis in EU (z = −7.13, p = 9.8E-13), while rs2066702, also in ADH1B, was the most 

significant variant in AA (z = −5.98, p = 2.2E-9). Trans-ancestral modelling reinforced the 

robust effects of rs1229984 and other ADH1B SNPs on liability to AD across inverse-

variance weighted, random effects, and Bayesian models (Supplementary Figure S1, 

Supplementary Table S2).

Clumping the ADH locus for linkage disequilibrium (LD; r2 < 0.1 within 500 kb) suggested 

multiple independent signals in both populations, with the differing leading alleles reflecting 

different LD structures and allele frequencies in each population (Table 2, Supplementary 

Figure S2). Conditional analyses controlling for rs1229984 and rs2066702 had limited 

power, but results showed limited attenuation of effect sizes between marginal and 
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conditional analyses, consistent with the existence of additional independent effects in the 

region (Supplementary Table S3; Supplementary Figure S3). Suggestive independent signals 

in the genotyped cohorts included trialleleic variant rs894368 (marginal z = −4.57, p = 

4.9E-6; conditional z = −4.53, p = 5.8E-6) and insertion rs112346244 (marginal odds ratio = 

0.912, SE = .024, z = −3.81, p = 1.4E-4; conditional odds ratio = 0.883, SE = .025, z = 

−5.05, p = 4.5E-7; Supplementary Table S3). Several additional variants that were prioritized 

in the conditional analysis, while not significant, were in moderate to strong LD with rs698 

(marginal odds ratio = 1.115, SE = .021, z = 5.19, p = 2.1E-7; conditional odds ratio = 

1.084, SE = .021, z = 3.78, p = 1.6E-4), a functional ADH1C variant with a role in AD8,11.

A single novel SNP on chromosome 3, rs7644567, also reached GWS in the meta-analysis 

(z = 5.68, p = 1.36E-8; Supplementary Figure S4). Potential biological associations with 

rs7644567, including chromatin contacts (Supplementary Figure S5) and cerebellar 

expression of RBMS3, are summarized in Supplementary Information A9. However, 

rs7644567 did not replicate in two independent AA samples (Yale-Penn2 and COGA 

AAfGWAS) or the independent FINRISK cohort; all three replication cohorts estimating 

effects of the minor allele in the opposite direction of the discovery meta-analysis 

(Supplementary Table S4). The SNP is also rare in most EU samples (minor allele frequency 

[MAF] < 0.01), with the current GWAS results primarily attributable to AA cohorts, along 

with FinnTwin and NAG-Fin. The EU cohorts in the discovery meta-analysis show no 

evidence of association of AD with the SNPs in strongest LD with rs7644567 in African 

(rs13098461; z = 0.27, p = 0.79) or Finnish (rs9854300; z = 0.10, p = 0.92) reference 

samples (Supplementary Information A9). Based on the clear lack of replication there is 

insufficient evidence to conclude rs7644567 is associated with AD based on the current 

results.

There was limited genome-wide evidence for heterogeneity across all cohorts, within 

ancestry, between ancestries, or between study designs within ancestry (Supplementary 

Information A8; Supplementary Figures S6–S8). Evidence for inflation from population 

stratification or other confounding was also limited in the discovery meta-analysis (lambda = 

0.962; Supplementary Figure S9) and within EU (lambda = 1.053, LD score regression 

[LDSR] intercept = 1.018) and AA (lambda = 1.007, LDSR intercept = 0.991-0.997; 

Supplementary Information A11). Gene-level association testing with MAGMA15 did not 

identify any additional significant genes in EU or AA (Supplementary Table S5, 

Supplementary Information A12), likely due to lack of power.

Heritability and genetic correlations:

Liability-scale SNP-heritability of AD was estimated at h2
g = 0.090 (SE = 0.019, z = 4.80, p 

= 8.02E-7) in the meta-analysis of unrelated EU samples. Exclusion of the ADH1B locus 

did not substantially modify this estimate (h2
g = 0.089, SE = 0.0185). Nominally significant 

polygenic signal for the meta-analysis of unrelated AA individuals was observed based on 

LDSR with scores computed from 1000 Genomes African populations (z = 2.12, p = 0.017), 

but the quantitative estimate of h2
g was unstable depending on the choice of reference panel, 

reflecting the challenge of correctly specifying LDSR and robustly modelling LD for the AA 

population (Supplementary Information A11).

Walters et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Significant genetic correlation with AD in EU was observed for 17 traits after correction for 

multiple testing (p < 1.11E-3 for 45 tested traits; Figure 3; Supplementary Table S6). The 

largest positive correlations were with ever smoking tobacco (rg = 0.708, SE = 0.134, p = 

1.3E-7) and lifetime cannabis use (rg = 0.793, SE = 0.217, p = 2.5E-4), and with other 

psychiatric disorders, especially schizophrenia (rg = 0.357, SE = 0.054, p = 3.2E-11), ADHD 

(rg = 0.444, SE = 0.097, p = 4.2E-6), and depression (rg = 0.561, SE = 0.085, p = 3.5E-11). 

Educational attainment (rg = −0.468, SE = 0.066, p = 9.7E-13) and age at first birth (higher 

values indicate that participants were older when they had their first child; rg = −0.626, SE = 

0.104, p = 2.0E-9) showed significant inverse genetic correlation with AD suggesting that 

liability to AD risk was genetically related to lower educational attainment and lower age at 

which the participant had his or her first child.

Unexpected patterns of genetic correlation were observed when comparisons were made to 

other alcohol-related measures, indicating that those measures reflect aspects of alcohol use 

that are genetically distinguishable. AD was genetically correlated with alcohol consumption 

in a meta-analysis of the Alcohol Genome-wide Association (AlcGen) and Cohorts for 

Aging and Research in Genomic Epidemiology Plus (CHARGE+) consortia16 (rg = 0.695, 

SE = 0.155, p = 6.9E-6) but only modestly with alcohol consumption from the recent large 

UK Biobank analysis17 (rg = 0.371, SE = 0.092, p = 5.2E-5). No significant genetic 

correlation was observed between AD and a recent GWAS of the Alcohol Use Disorders 

Identification Test (AUDIT) in a 23andMe cohort18 (rg = 0.076, SE = 0.171, p = 0.65), 

perhaps due to the low levels of drinking and drinking-related problems in that population18. 

AD is, however, nominally genetically correlated with GWAS of delay discounting in the 

23andMe sample19 (rg = 0.487, SE = 0.178, p = 6.0E-3).

Association with ADH1B expression:

Based on the strong observed association with rs1229984 and rs2066702 we examined 

whether other variants affecting ADH1B expression (eQTLs) were also associated with AD 

using GTEx V7 results (https://www.gtexportal.org/)20. Three variants, rs11939328 (EU p = 

0.78, AA p = 0.98, Trans p = 0.78), rs10516440 (EU p = 3.97E-6, AA p = 1.97E-3, Trans p 

= 4.72E-8), and rs7664780 (EU p = 0.87, AA p = 0.083, Trans p = 0.405), were selected 

after LD-informed clumping and the exclusion of variants in LD (r2>0.1) with the GWS 

coding alleles rs1229984 and rs2066702. Of these, only rs10516440 (AD conditional 

analyses: EU p = 1.34E-3, AA p = 0.013, Trans p = 7.44E-5) was a significant multi-tissue 

eQTL in random effects analysis for ADH1B (SFE = 319.4, SHet = 27.6, p = 1.4E-76), 

ADH1A (SFE = 139.4, SHet = 6.6, p = 6.72E-33), and ADH1C (SFE = 167.3, SHet = 8.9, p = 

1.9E-39). Rs10516440 is a LD proxy (r2 > 0.9) of rs6827898 (Table 2) in populations of 

European and African descent. These variants are both located in an intergenic region in the 

ADH gene cluster between ADH1C and ADH7. In line with the fact that the protective 

coding alleles are associated with increased activity of the enzyme encoded by ADH1B, the 

major allele rs10516440*A was associated with increased ADH1B expression and reduced 

AD risk.
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Associations with other GWS loci:

We examined results for the eight independent variants associated at GWS levels with 

alcohol consumption in the UK Biobank17 (Supplementary Table S7). Among the UK 

Biobank findings, three of the four reported variants in the ADH region of chromosome 4 

(rs145452708 – a proxy for rs1229984 with D’=1, rs29001570 and rs35081954) were 

associated in the present study with AD (p ranging from 3.5E-5 – 2.3E-10) with sign 

concordant effects; the remaining variant was excluded from our analysis due to MAF < 

0.01. The UK Biobank lead variant in KLB, rs11940694, was nominally associated with AD 

(p = 0.0097), though this does not surpass multiple testing correction for the eight GWS 

alcohol consumption loci. We see little evidence (p > 0.2) for association of AD with the 

reported loci at GCKR and CADM2, which may be due to differences in power for the given 

effect size or because these genes exert an influence on liability to consume alcohol but not 

later problems. The locus on chromosome 18 showed limited regional association with AD, 

but the index variant was not present in our analysis because it no longer appears in the 1000 

Genomes Phase 3 reference panel21.

Polygenic Risk Score (PRS) analyses:

PRS based on our meta-analysis of AD were significantly predictive of AD outcomes in all 

three tested external cohorts. PRS derived from the unrelated EU GWAS predicted up to 

0.51% of the variance in past month alcohol use disorder in ALSPAC (p = 0.0195; 

Supplementary Figure S10A) and up to 0.3% of problem drinking as indexed by the CAGE 

screener in GS (p = 7.9E-6; Supplementary Figure S10B). PRS derived from the unrelated 

AA GWAS predicted up to 1.7% of the variance in alcohol dependence in the COGA 

AAfGWAS cohort (p = 1.92E-7; Supplementary Figure 10C).

Importantly, PRS derived from the unrelated EU GWAS showed much weaker prediction 

(maximum R2 = 0.37%, p = 0.01; Supplementary Figure S10D) in the COGA AAfGWAS 

than the ancestrally-matched AA GWAS-based PRS despite the much smaller discovery 

sample for AA. In addition, the AD PRS also still yielded significant variance explained 

after controlling for other genetic factors. Prediction of CAGE scores in GS remained 

significant and showed minimal attenuation (R2 = 0.29%, p = 1.0E-5) after conditioning on 

PRS for alcohol consumption derived from UK Biobank results17. In COGA AAfGWAS, the 

AA PRS derived from our study continued to predict 1.6% of the variance in alcohol 

dependence after inclusion of rs2066702 genotype as a covariate, indicating independent 

polygenic effects beyond the lead ADH1B variant (Supplementary Information A14).

Power analysis:

Power analyses indicated that the current meta-analysis is expected to have at least 41% 

power to detect very common variants (MAF ≥ 0.25) with odds ratios ≥ 1.10 at p < 5E-8 and 

63% power for p < 1E-6 (Supplementary Figure S11). Power at p < 1E-6 is relevant because 

only 5 loci reach that threshold in the current meta-analysis. Power is lower for less common 

variants (MAF ≤ 0.05) even with odds ratios ≥ 1.20 at p < 1E-6 (60% power) and p < 5E-8 

(38% power).
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For perspective, power computations using the observed distribution of top effects for other 

large GWAS of polygenic traits suggest that we observe significantly fewer genome-wide 

significant loci for AD than would be expected if the loci had true effect sizes and allele 

frequencies similar to schizophrenia (expected: 25.4 loci, 95% CI 21-30) or obesity 

(expected: 8.9 loci, 95% CI 6-12), but not fewer than would be expected for effect sizes 

similar to major depression (Supplementary Information A10, Supplementary Table S8).

DISCUSSION

To our knowledge, this is the largest GWAS of rigorously-defined AD, comprising 14,904 

AD individuals and 37,944 controls. We identified known loci in ADH1B that differed 

between EU and AA, as well as novel genetic correlations between AD and psychiatric 

disorders (e.g., schizophrenia), tobacco and cannabis use, and social (e.g., socio-economic 

deprivation) and behavioral (e.g., educational attainment) outcomes. Analyses also revealed 

a genetic distinction between GWAS results for alcohol consumption and AD. Although 

larger sample sizes can be amassed by focusing on quantitative measures of consumption, 

only the upper tail is relevant to AD (as a medical diagnosis) and even that does not capture 

other aspects of disordered drinking (e.g., loss of control, withdrawal) directly. Conversely, 

cases derived from electronic medical records (e.g., ICD codes) result in a high rate of false 

negatives, while self-screening instruments (e.g. AUDIT scores) are best suited to analyses 

of disordered drinking when a sufficiently high threshold or score cut-off is applied to focus 

on severity. Our study has the advantage of greater diagnostic precision via use of semi-

structured interviews to diagnose AD systematically in a majority of the constituent studies, 

and therefore greater interpretability in the context of clinically-important AD.

The genome-wide significant SNPs reaffirm the importance of functional variants affecting 

alcohol metabolism to the risk of AD. The top association in ADH1B, rs1229984, is a 

missense variant that is amongst the most widely studied in relation to alcohol use, misuse 

and dependence8–10. The resulting amino acid substitution (Arg48His) increases the rate at 

which alcohol dehydrogenase 1B oxidizes ethanol to acetaldehyde8. Studies on Asian 

populations in which the derived allele is common demonstrated strong protection against 

the development of AD8,9,13. In EU and AA, the protective allele is present at much lower 

frequencies (EU MAF = 0-4%, AA MAF < 1%), nevertheless, recent large-scale studies 

have shown an association between this locus and alcohol consumption and problems at 

GWS levels in EU with similar effect size8–10. The lead variant in AA cohorts, rs2066702 

(Arg370Cys), is another functional missense variant in ADH1B, and it also encodes an 

enzyme with an increased rate of ethanol oxidation8. The allele encoding Cys370 is common 

in AA, but rare in other populations8. Our results clearly show that these two different 

functional SNPs in ADH1B both affect risk for alcoholism, with their relative importance 

dependent upon allele frequency in the population studied. There is a suggestion of 

additional independent effects in the chromosome 4 region, but larger studies will be needed 

to evaluate this.

The only other locus to reach significance was rs7644567 on chromosome 3, primarily 

driven by AA cohorts. The locus failed to replicate in two small, independent AA samples, 

and in the only European cohort with even a modest allele frequency (FINRISK) the effect 
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was in the opposite direction. There have also been discussions about whether the standard 

GWAS significance threshold should be applied to the more genetically diverse African-

ancestry cohorts22,23 and the possibility of confounding from non-linear relationships 

between the phenotype and ancestry-informative markers like rs7644567 in admixed 

samples24, all of which increase our skepticism regarding this finding. There is, therefore, 

insufficient evidence at this time to conclude that rs7644567 is associated with alcohol 

dependence. Analyses of much larger samples of African ancestry will be needed to resolve 

this.

Despite limited SNP-level findings, there is significant evidence for polygenic effects of 

common variants in both EU and AA cohorts. The estimated h2
g = 0.09 for AD in EU is 

only modestly lower than those recently reported for alcohol consumption (h2
g = 0.13)17 and 

AUDIT scores (h2
g = 0.12)18, and comparable to estimates derived for cigarettes-per-day25. 

Our h2
g estimate is lower than a prior report7, likely reflecting a combination of differences 

in estimation method (GREML vs. LDSR) and greater heterogeneity in ascertainment 

strategy across samples in the current study (see26–28). The latter is especially relevant in 

comparing h2
g from that prior single cohort to our meta-analysis that included cohorts with a 

wide range of ages at ascertainment, cultural environments, and ascertainment strategies, 

including enrichment for other substance use disorders. Similar to other psychiatric 

disorders (e.g. schizophrenia), a much larger sample size will potentially aid in overcoming 

across-sample heterogeneity and capture a greater proportion of genetic variance.

Comparing our GWAS to recent GWAS of alcohol consumption measures suggests that the 

liability underlying normative patterns of alcohol intake and AD are only partially 

overlapping. Genome-wide, genetic correlations were significantly < 1 with log-scaled 

alcohol consumption by participants in AlcGen and CHARGE+ Consortia cohorts16 (rg = 

0.695) and in the UK Biobank17 (rg = 0.371). We also observe only partial replication of the 

8 loci significantly associated with consumption in the UK Biobank, with strongest results 

from SNPs in the ADH region, including a proxy for rs1229984. In addition there was no 

significant correlation with GWAS of log-scaled AUDIT scores in 23andMe participants18 

(rg = 0.076). Subsequent analyses suggest these estimates are sensitive to sample 

characteristics, with somewhat higher genetic correlations reported in analysis of alcohol 

consumption in the full UK Biobank29 (rg = 0.75) and of AUDIT in combined data from 

23andMe participants and UK Biobank30 (rg = 0.39). Importantly, initial UK Biobank data 

inclusion of a subset of participants recruited for a study of smoking and lung function in the 

first analysis17, which may have resulted in collider bias31 and contributed to the initial 

lower genetic correlation.

One key factor in interpreting the differences between these traits and AD is that the 

distribution of consumption levels and AUDIT scores can be highly skewed in population 

samples, with most individuals at the low (non-pathological) end of the spectrum. This effect 

may be especially pronounced among the older, healthy volunteers of the UK Biobank 

cohort32 and in the 23andMe cohort, which is more educated and has higher socioeconomic 

status than the general US population18. We hypothesize that the variants that affect 

consumption at lower levels may differ substantively from those that affect very high levels 

of consumption in alcohol dependent individuals, who are also characterized by loss of 
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control over intake33. This appears to be the case in studies that used specific cut-offs to 

harmonize AUDIT scores with AD data30,34. The larger of these studies30 reports that the 

genetic correlation between AD and AUDIT scores is maximized at an AUDIT cutoff ≥ 20 

(with controls defined as those scoring ≤ 4; rg = 0.90). Interestingly, that study also found 

that a score reflecting items related to problem drinking (AUDIT-P) resulted in a stronger 

genetic correlation (rg = 0.64) than a score related to alcohol consumption alone (rg = 0.33). 

The strong genetic correlation of AD with lower educational attainment and lower socio-

economic status (i.e. higher Townsend deprivation), in contrast to positive genetic 

correlations of education with consumption17 and AUDIT scores related to consumption30, 

further underscore this distinction between normative/habitual levels of alcohol intake and 

diagnosed AD, at least in the respective populations studied.

The current analysis identified robust genetic correlation of AD with a broad variety of 

psychiatric outcomes. This correlation is strongest for aspects of negative mood, including 

neuroticism and major depression, as also seen in twin studies35,36 and through recent 

specific molecular evidence for pleiotropy37,38. Taken together with evidence from other 

recent genomic studies37, and null correlations for other GWAS of alcohol consumption, but 

not for measures of problem drinking (e.g., AUDIT-P), these findings suggest that major 

depression may primarily share genetic liability with alcohol use at pathological levels.

AD was also strongly genetically correlated with poor educational and socioeconomic 

outcomes, and marginally correlated with measures of risk-taking. Nominally significant 

genetic correlations with delay discounting (i.e. favoring immediate rewards), risk-taking, 

and the strong genetic correlation of AD with ADHD, cigarette smoking and cannabis use 

may similarly reflect a shared genetic factor for risk-taking and reduced impulse control. 

Common genetic liability to early, risky behaviors is characteristic of both AD39 and age of 

first birth40. The observed negative genetic correlation with age of first birth is consistent 

both with risk-taking and with the significant genetic correlations of AD with lower 

socioeconomic status, as indexed by higher neighborhood Townsend deprivation score, and 

lower educational attainment. Lower socioeconomic status is correlated with both AD41 and 

age at first birth42 and the current study suggests that shared genetic liabilities may be one 

potential mechanism for their observed relationship. However, the question of whether these 

genetic correlations represent causal processes, horizontal pleiotropy, or the impact of 

unmeasured confounders should be explored in the future43.

Lower genetic correlations were observed for most biomedical and anthropometric 

outcomes. Liver enzymes GGT and ALT, once proposed as possible biomarkers for alcohol 

abuse44, showed only nominal evidence for genetic correlation with AD and neither survived 

multiple testing correction. Notably, we did not find any association between AD and body-

mass index (BMI). Negative genetic correlations with BMI were previously reported for 

both alcohol consumption17 and AUDIT scores18, but there is prior evidence that BMI has 

differing underlying genetic architecture in the context of AD and outside of that context45. 

The negative genetic correlations observed in those studies are consistent with studies of 

light to moderate drinking, which is also associated with healthier lifestyle behaviors, while 

heavy and problematic drinking is typically associated with weight gain46.
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This study benefits from precision in diagnostic assessment of AD, known alcohol exposure 

in a majority of the controls, and careful quality control that excluded overlap of individuals 

between studies. Despite these strengths, our sample size was insufficient to identify 

additional GWS loci robustly. Power analyses indicate that additional SNPs associated with 

AD are likely to have small effect sizes, smaller than schizophrenia47 and more consistent 

with more common psychiatric disorders (e.g. major depression48). This supports the 

pressing need for collection of large numbers of well characterized cases and controls. The 

differences between our results and the study of AUDIT scores18 highlight that 

ascertainment and trait definition are critically important and must be taken into account. 

Careful study of how screening tools, such as the AUDIT, correlate to genetic liability to AD 

(as defined by DSM-IV or similar) could substantially boost sample sizes for future AD 

GWAS. There is also a continued need to characterize the genetic architecture of AD in non-

EU populations.

We show a novel genetic distinction between drinking in the pathological range (AD) and 

habitual drinking that does not cross the threshold into pathology or dependence nor 

captures behavioral aspects of disordered drinking. Larger future samples will allow us to 

uncover additional pleiotropy between pathological and non-pathological alcohol use as well 

as between AD and other neuropsychiatric disorders.

METHODS

Samples:

The Substance Use Disorders working group of the Psychiatric Genomics Consortium 

(PGC-SUD14) collected individual genotypic data from 14 case/control studies and 9 family-

based studies and summary statistics from GWAS of AD from 5 additional cohorts (Table 

1). AD was defined as meeting criteria for a DSM-IV2 (or, for one cohort, DSM-IIIR50; a 

very similar construct; Supplementary Note B1) diagnosis of AD. Diagnoses were derived 

either from clinician ratings or semi-structured interviews. Excepting three cohorts with 

population-based controls (N=7,015), all controls were screened for AD. Individuals with no 

history of drinking alcohol and those meeting criteria for DSM-IV alcohol abuse were 

excluded as controls where possible (Supplementary Information A1; Life Sciences 

Reporting Summary). This study was approved by the institutional review board (IRB) of 

Washington University in St. Louis and was conducted in accordance with all relevant 

ethical regulations. Each contributing cohort obtained informed consent from their 

participants and received ethics approvals of their study protocols from their respective 

review boards in accordance with applicable regulations.

Quality Control and Imputation:

Data for the cohorts that shared raw genotypes were deposited to a secure server for uniform 

quality control (QC). QC and imputation of the 14 case/control studies was performed using 

the ricopili pipeline (https://github.com/Nealelab/ricopili). For the 9 family-based cohorts, 

an equivalent pipeline, picopili (https://github.com/Nealelab/picopili), was developed for 

QC, imputation, and analysis appropriate for diverse family structures, including twins, 

sibships and extended pedigrees (Supplementary Information A2).
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After initial sample and variant QC, principal components analysis (PCA) was used to 

identify population outliers for exclusion and to stratify samples in each study by continental 

ancestry. Identified EU and AA ancestry populations were confirmed by PCA using the 

1000 Genomes reference panel21 (Supplementary Figure S12). Ancestry within these 2 

groups was accounted for with principal components. Final sample and variant QC, 

including filters for call rate, heterozygosity, and departure from Hardy-Weinberg 

equilibrium (HWE), was then performed within each ancestry group in each cohort. Samples 

were also filtered for cryptic relatedness and for departures from reported pedigree structures 

(Supplementary Information A3; Life Sciences Reporting Summary).

Each cohort was imputed using SHAPEIT51 and IMPUTE252, using the cosmopolitan (all 

ancestries) 1000 Genomes reference panel consistent with prior recommendations53 (see 

also47,54,55). Concordance of minor allele frequencies (MAF) with the reference panel was 

verified prior to imputation, with SNPs in EU cohorts compared to MAF in European 

population samples and AA cohorts compared to MAF in African population samples 

(Supplementary Information A4). Cryptic relatedness between cohorts was excluded after 

imputation (Supplementary Information A5). Imputed SNPs were then filtered for INFO 

score > 0.8 and allele frequency > 0.01 prior to analysis.

Association Analysis:

A GWAS of AD status was performed within each ancestry stratum of each sample using an 

association model appropriate for the study design (Table 1, Supplementary Table S1). For 

case/control studies, GWAS was performed using logistic regression with imputed dosages. 

For family-based studies of small, simple pedigrees (e.g., sibships), association with imputed 

genotypes was tested using generalized estimating equations (GEE). For more complex 

pedigrees, imputed genotypes were tested using logistic mixed models. Sex was included as 

a covariate, along with principal components to control for population structure 

(Supplementary Information A6, Supplementary Note B2, Supplementary Figures S13–

S14).

In addition to this primary analysis, subsets of genetically unrelated individuals were 

selected from each family-based cohort (i.e. the most severe case in each family, by 

symptom count, was selected, followed by selection of unrelated/married-in controls) and 

used to perform a conventional case/control GWAS using logistic regression. This was used 

in place of the family-based GWAS for estimation of effect sizes and LD score regression 

analyses (Supplementary Table S2).

Genome-wide Meta-Analysis:

The primary discovery meta-analysis of all ancestry-stratified GWAS (Ncase = 14,904; 

Ncontrol = 37,944) was conducted in METAL56. As the different study designs (family vs. 

case-control) produced effect sizes that were not comparable, results were combined using 

weighting by effective sample size (Supplementary Information A7, Supplementary Note 

B3). Separate ancestry-specific discovery meta-analyses of EU (N = 46,568) and AA (N = 

6,280) cohorts were also performed. Heterogeneity was evaluated across all cohorts and 

between study designs (Supplementary Information A8).
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In addition to the discovery meta-analyses, we conducted meta-analyses for two design 

subsets. First, we performed sample size weighted meta-analysis of the subset of genetically 

unrelated individuals in EU (N = 38,686) and AA (N = 5,799) cohorts for use in LD score 

regression (LDSR) analysis. Second, we performed inverse-variance weighted meta-analysis 

of genetically unrelated individuals in genotyped cohorts to estimate within-ancestry effect 

sizes for EU (N = 28,757) and AA (N = 5,799). These effect sizes were then used to 

compare trans-ancestral fine mapping results using inverse-variance weighted fixed effects, 

random effects57, and Bayesian58 models (Supplementary Information A7). Supplementary 

Table S2 summarizes all of the meta-analytic models considered in the current analysis.

Replication:

As described below, a novel locus on chromosome 3 was genome-wide significant (GWS) in 

the trans-ancestral discovery meta-analysis. To seek replication, we examined the association 

between this locus and DSM-IV AD in two independent AA samples: Yale-Penn 2 (911 

cases, 599 controls; tested using GEE) and COGA AAfGWAS (880 cases, 1,814 controls; 

tested using GWAF59). Association with AD status, broadly defined using hospital and death 

records, was also examined in the FINRISK cohort (1,232 cases, 22,614 controls) using 

Firth logistic regression60 (Supplementary Information A1.4; Life Sciences Reporting 

Summary).

Power Analysis:

Post-hoc power analysis was performed for odds ratios ranging from 1.05 to 1.30 and across 

allele frequencies using CaTS61 with the estimated effective sample size. Power analysis 

identifies the range of SNP effect sizes the current study was likely to detected at genome-

wide significance if such effects exist. Additionally, we made specific comparisons to the 

distribution of effects for schizophrenia47, obesity62 and major depression48 as meaningful 

benchmarks to understand the magnitude of effect sizes plausible for AD (Supplementary 

Information A10; Life Sciences Reporting Summary).

Heritability and Genetic Correlation Analysis:

LDSR analysis63 was performed to estimate the heritability explained by common SNPs in 

meta-analyses of unrelated EU and AA samples, respectively. LDSR was performed using 

HapMap3 SNPs and LD scores computed from 1000 Genomes reference samples 

corresponding to each population (Supplementary Information A11). Conversion of h2
g 

estimates from observed to liability scale64 was performed assuming population prevalences 

of 0.159 and 0.111 for AD in alcohol-exposed EU and AA individuals, respectively3. Gene-

level enrichments were also tested with MAGMA15 (Supplementary Information A12).

Genetic correlation between AD and 45 traits from LD Hub25 and other published 

studies16–19,65–71 was examined using LDSR with the same unrelated EU meta-analysis 

(10,206 cases and 28,480 controls) and precomputed European LD scores. LDSR compares 

GWAS results for pairs of traits to estimate the correlation in the genetic liabilities explained 

by all common SNPs in the LD reference panel. To avoid increasing the multiple testing 

burden, redundant or highly-correlated phenotypes were reduced by manually selecting the 
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version of the phenotype with the greatest predicted relevance to AD, largest sample size, or 

highest heritability (Supplementary Information A13).

Polygenic Risk Scores:

To test the generalizability of the current GWAS results, polygenic risk scores (PRS) were 

computed in three external cohorts (Supplementary Information A1.5; Life Sciences 

Reporting Summary). PRS computed from EU ancestry results were used to predict alcohol 

dependence in ALSPAC72,73 and COGA AAfGWAS, and CAGE screener scores in 

Generation Scotland (GS)74. PRS based upon the AA results were used to predict alcohol 

dependence in COGA AAfGWAS (Supplementary Information A14).

Data availability:

Summary statistics from the genome-wide meta-analyses are available on the Psychiatric 

Genomics Consortium’s downloads page (http://www.med.unc.edu/pgc/results-and-

downloads), including the source data for Figures 1 and 2. Individual-level data from the 

genotyped cohorts and cohort-level summary statistics will be made available to researchers 

following an approved analysis proposal through the PGC Substance Use Disorder group 

with agreement of the cohort PIs; contact the corresponding authors for details. Cohort data 

are also available from dbGaP except where prohibited by IRB or European Union data 

restrictions. Expression data used to evaluate variants in ADH1B is available from GTEx 

(https://gtexportal.org/home/). Hi-C data used to evaluate the chromosome 3 variant can be 

queried with HUGIn (https://yunliweb.its.unc.edu/hugin/). Publicly available genome-wide 

summary statistics used for testing genetic correlations are accessible through LD Hub 

(http://ldsc.broadinstitute.org/), or from the Psychiatric Genomics Consortium (http://

www.med.unc.edu/pgc/results-and-downloads), the Social Science Genetic Association 

Consortium (SSGAC; https://www.thessgac.org/data), Enhancing Neuro Imaging Genetics 

through Meta Analysis (ENIGMA; http://enigma.ini.usc.edu/research/download-enigma-

gwas-results/), and the Neale Lab (http://www.nealelab.is/uk-biobank); for availability of 

summary statistics from other studies contact the respective authors. The source data for 

Figure 3 is included in Supplementary Table S6.

Code availability:

Code for GWAS of case/control cohorts with ricopili is available at https://github.com/

Nealelab/ricopili. Code for GWAS of family-based cohorts with picopili is available at 

https://github.com/Nealelab/picopili. Code and reference data for LD score regression 

analyses are available at https://github.com/bulik/ldsc. Effective sample size calculations 

were implemented using output from PLINK (https://www.cog-genomics.org/plink2), and 

GMMAT (https://content.sph.harvard.edu/xlin/software.html#gmmat) and geepack (https://

cran.r-project.org/web/packages/geepack/index.html) in R (https://cran.r-project.org/); stand-

alone software for this purpose hasn’t been written but example code is available from the 

first author by request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Accession Codes

Comorbidity and Trauma Study (CATS): dbGAP accession phs000277.v1.p1

Center for Education and Drug Abuse Research (CEDAR): dbGAP accession 

phs001649.v1.p1

Christchurch Health and Development Study (CHDS): dbGAP submission in process

The Collaborative Study on the Genetics of Alcoholism (COGA): dbGaP accession numbers 

phs000125.v1.p1, phs000763.v1.p1, and phs000976.v1.p1

Study of Addiction: Genetics and Environment (SAGE): dbGAP accession phs000092.v1.p1

Collaborative Genetic Study of Nicotine Dependence (COGEND): dbGAP accession 

phs000404.v1.p1

Gene-Environment-Development Initiative (GEDI) – Duke University (GSMS): dbGAP 

accession phs000852.v1.p1

Center on Antisocial Drug Dependence (CADD): dbGAP submission in process

Spit for Science: dbGAP submission in process

NIAAA: available via https://btris.nih.gov/

Gene-Environment-Development Initiative (GEDI) –Virginia Commonwealth University 

(VTSABD): dbGAP submission in process

Minnesota Center for Twin and Family Research (MCTFR): dbGAP accession 

phs000620.v1.p1

Yale-Penn: dbGAP accession phs000425.v1.p1 and phs000952.v1.p1

See Data Availability for information on accessing other cohorts.
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Figure 1: Manhattan plot of discovery trans-ancestral meta-analysis showing strong evidence for 
rs1229984 in ADH1B.
Results from the discovery meta-analysis of all cohorts (Ncase=14,904, Ncontrol=37,944) for 

association of genome-wide SNPs with AD under a fixed effects meta-analysis weighted by 

effective sample size. Dashed red reference line indicates genome-wide significance after 

correction for multiple testing (p < 5E-8).
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Figure 2: Regional plots for the ADH1B locus (rs1229984) in the trans-ancestral discovery, 
African-American (AA), and European (EU), meta-analyses.
Results of fixed effects meta-analysis with effective sample size weights for the ADH1B 
locus in (A) all cohorts (Ncase=14,904, Ncontrol=37,944); (B) AA cohorts (Ncase=3,335, 

Ncontrol=2,945); and (C) EU cohorts (Ncase=11,569, Ncontrol=34,999). Red reference line 

indicates the genome-wide significance threshold after correction for multiple testing within 

each analysis (p < 5E-8). Within ancestry, colored points reflect the degree of LD (pairwise 

r2) to the index variant (indicated by a purple diamond) in 1000 Genomes Project reference 

data21 for individuals of (B) African or (C) European ancestry, respectively. LD structures in 
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the two ancestries differ, so for the trans-ancestral sample (A) LD is not given, indicted by 

gray points. Two-tailed tests used for all analyses.
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Figure 3: Genetic correlations between 45 traits and alcohol dependence in Europeans.
Genetic correlation results from LD score regression (LDSR) with the meta-analysis of AD 

in unrelated EU individuals (Ncase=10,206, Ncontrol=28,480). After Bonferroni correction, 

significant correlations are observed with 17 traits and disorders (p < 1.1E-3; bold), with 

nominally significant results for 8 additional traits and disorders (p < .05; italics) based on 

two-tailed tests of the estimated genetic correlation with block jackknife standard errors. 

Error bars indicate 95% confidence intervals, with arrows indicating intervals extending 
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above 1 or below −1. Vertical gray reference line corresponds to the null hypothesis of no 

genetic correlation with AD. Phenotypes are organized by research domain.
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